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A regime-switching diffusion process (RSDP), is a diffusion
process in random environments characterized by a
Markov chain.
The state vector of a RSDP is a pair (X (t),Λ(t)), where
{X (t)}t≥0 satisfies a stochastic differential equation (SDE)

dX (t) = b(X (t),Λ(t))dt + σ(X (t),Λ(t))dWt , t > 0, (1.1)

with the initial data X0 = x ∈ Rn,Λ0 = i ∈ S, and {Λ(t)}t≥0
denotes a continuous-time Markov chain with the state
space S := {1,2 · · · ,N}, 1 ≤ N ≤ ∞, and the transition
rules specified by

P(Λ(t + ∆) = j |Λ(t) = i) =

{
qij∆ + o(∆), i 6= j ,
1 + qii∆ + o(∆), i = j .

(1.2)
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Motivations (Cont.)

RSDPs have considerable applications in e.g. control
problems, storage modeling, neutral activity, biology and
mathematical finance (see e.g. the monographs by
Mao-Yuan (2006), and Yin-Zhu (2010)). The dynamical
behavior of RSDPs may be markedly different from
diffusion processes without regime switchings, see e.g.
Pinsky -Scheutzow (1992), Mao-Yuan (2006).

5



Mao, X. and Yuan, C., Stochastic Differential Equations with
Markovian Switching, Imperial College Press, 2006

It is interesting to have a look of the following two equations

dx(t) = x(t)dt + 2x(t)dW (t) (1.3)

and

dx(t) = 2x(t) + x(t)dW (t) (1.4)

switching from one to the other according to the movement of
the Markov chain Λ(t). We observe that Eq. (1.3) is almost
surely exponentially stable since the Lyapunov exponent is
λ1 = −1 while Eq. (1.4) is almost surely exponentially unstable
since the Lyapunov exponent is λ2 = 1.5.

6



Let Λ(t) be a right-continuous Markov chain taking values in
S = {1,2} with the generator

Γ = (γij)2×2 =

(
−1 1
γ −γ

)
.

Of course W (t) and Λ(t) are assumed to be independent.
Consider a one-dimensional linear SDEwMS

dx(t) = a(Λ(t))x(t)dt + b(Λ(t))x(t)dW (t) (1.5)

on t ≥ 0, where

a(1) = 1, a(2) = 2, b(1) = 2, b(2) = 1.

However, as the result of Markovian switching, the overall
behaviour, i.e. Eq. (1.5) will be exponentially stable if γ > 1.5
but exponentially unstable if γ < 1.5 while the Lyapunov
exponent of the solution is 0 when γ = 1.5.
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Figure: The graph of numerical solution when γ = 2.
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Figure: The graph of numerical solution when γ = 1.5.
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Figure: The graph of numerical solution when γ = 0.5.
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Motivations (Cont.)

So far, the works on RSDPs have included ergodicity
(Cloez-Hairer (2013), Shao (2014)) stability in distribution
(Mao-Yuan (03), Xi-Yin (2010)), recurrence and transience
(Pinsky-Scheutzow (1992),invariant densities (Bakhtin et
al. (2014)) and so forth
For the counterpart associated with Euler-Maruyama (EM)
algorithms, we refer to Yuan-Mao (2005), and Yin-Zhu
(2010), where RSDPs therein enjoy finite state space.
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Shao, J., Yuan, C., Stability of regime-switching processes
under perturbation of transition rate matrices. Nonlinear
Analysis: Hybrid Systems 33 (2019), 211-226.

In this work we are concerned with the stability of the process
(Xt ) under perturbation of the transition rate matrix of (Λ(t)).
From the application point of view, there are mainly two types of
perturbations of Q.
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First type of perturbation: The size of Q is fixed, however, each entry
qij of Q may have small perturbation. Namely, there is another
transition rate matrix Q̃ = (q̃ij )i,j∈S, and each entry q̃ij acts as an
estimator of the element qij of Q. Without loss of generality, assume
that Q̃ is conservative and totally stable, then a unique transition
function P̃t , t ≥ 0 is determined (cf. e.g. [3, Corollary 3.12]). Let
(Λ̃(t)) be a continuous-time Markov chain starting from i0 = Λ0

corresponding to Q̃. Then the distribution of Λ̃t is fixed, so, a new
dynamical system (X̃ (t)) is induced from the process (Λ̃(t)), i.e.

dX̃ (t) = b(X̃ (t), Λ̃(t))dt+σ(X̃ (t), Λ̃(t))dW (t), X̃0 = x0 ∈ Rd , Λ̃(0) = i0 ∈ S.
(1.6)

Under some suitable conditions of the coefficients b(·, ·) and σ(·, ·),
SDEs (1.1) and (1.6) admit a unique solution. Therefore, the
distribution L(X (t)) of X (t) (resp. L(X̃ (t)) of X̃ (t)) is determined in
some sense by the transition rate matrix Q (resp. Q̃). The following
basic and important question therefore arise:

− Can we use the difference between Q and Q̃ to charactrize the
difference between the distributions of X (t) and X̃ (t)?
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Second type of perturbation: The size of Q can be changed. In
applications, when facing the graphs drawn from experimental
data, it is hard sometimes to determine the number of the
regimes for the regime-switching processes. For example, if
there are actually three regimes, the process stays for a very
short period of time at one of them. From this kind of
experimental data, it is very likely that a regime-switching
model with only two regimes are detected. What is the impact
caused by this incorrect choice of the number of states for the
regime-switching processes?
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Precisely, let Q̂ be a conservative transition rate matrix on
E := S\{1, . . . ,m} with m < N, which determines uniquely the
semigroup P̂t = etQ̂ , t ≥ 0 on E . Let (Λ̂t ) be a continuous-time
Markov chain on E corresponding to (P̂t ) or equivalently Q̂. Using the
same coefficients b(·, ·), σ(·, ·) as those of SDE (1.1), and considering
the new dynamical system (X̂t ) corresponding to (Λ̂t ) defined by:

dX̂t = b(X̂t , Λ̂t )dt + σ(X̂t , Λ̂t )dWt , X̂0 = x0 ∈ Rd , Λ̂0 = i1 ∈ E . (1.7)

Under suitable conditions of b and σ, the solutions of (1.1) and (1.7)
are uniquely determined. This means that given Q̂ on E , the
distribution of X̂t is then determined. Denote L(Xt ) and L(X̂t ) the
distributions of Xt and X̂t respectively. We aim to measure the
Wasserstein distance W2(L(Xt ),L(X̂t )) via the difference between
the transition rate matrices Q = (qij )i,j∈S and Q̂ = (q̂ij )i,j∈E . To
achieve this, rewrite Q in the following form:

Q =

(
Q0 A
B Q1

)
, (1.8)

where Q0 ∈ Rm×m, A ∈ Rm×(N−m), B ∈ R(N−m)×m, and
Q1 ∈ R(N−m)×(N−m).
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To analyze the impact of the regularity of the coefficients in SDE
(1.1), we will consider separately two situations: SDEs with regular
coefficients and SDEs with irregular coefficients. Let us first consider
the situation that the coefficients of (1.1) are regular. Assume the
coefficients b : Rd × S→ Rd and σ : Rd × S→ Rd×d satisfy:

(H1) For each i ∈ S there exists a constant κi such that

2〈x−y ,b(x , i)−b(y , i)〉+2‖σ(x , i)−σ(y , i)‖2
HS ≤ κi |x−y |2, x , y ∈ Rd .

(H2) There exists a constant K such that

|b(x , i)|2 ≤ K (1+|x |2), ‖σ(x , i)‖2
HS ≤ K (1+|x |2), x ∈ Rd , i ∈ S.

In this case, we shall use the Wasserstein distance W2(·, ·) to
measure the difference between the distributions of X (t) and X̃ (t),
which is defined by

W2(ν1, ν2)2 = inf
Π∈C(ν1,ν2)

{∫
Rd×Rd

|x − y |2Π(dx ,dy)
}
, (2.1)

where C(ν1, ν2) denotes the set of all probability measures on
Rd × Rd with marginals ν1 and ν2.
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For an irreducible transition rate matrix Q on S, its
corresponding transition probability measure Pt (i , ·) must be
ergodic. Denote π = (πi) the invariant probability measure of
Q. Define τ to be the largest positive constant such that

sup
i∈S
‖Pt (i , ·)− π‖var = O(ε−τ t ), t > 0, (2.2)

where ‖µ− ν‖var stands for the total variation distance between
two probability measures µ and ν, i.e.
‖µ− ν‖var = 2 sup{|µ(A)− ν(A)|; A ∈ B(S)}. Additionally, for
p > 0, let

Qp = Q + p diag(κ0, κ1, . . . , κN),

and
ηp = −max

{
Re(γ); γ ∈ spec(Qp)

}
, (2.3)

where spec(Qp) denotes the spectrum of the operator Qp.
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Theorem

Let (Xt ,Λt ) and (X̃t , Λ̃t ) be the solutions of (1.1) and (1.6)
respectively. Assume (H1) and (H2) hold. Then

W2(L(Xt ),L(X̃t ))2 ≤
(
4ε−1+8

)
KC2(p)

1
p

(
N2t2‖Q − Q̃‖`1

) 1
q
Ψ(t , ε, ηp,K ,p),

(2.4)

where p > 1, q = p/(p − 1), ε and C2(p) are positive constants,
`1-norm is the maximum absolute row sum norm, ηp is defined by
(2.3), and

Ψ(t , ε, ηp,K ,p) =
(∫ t

0

[
1 + (|x0|2 + 2Ks)e(2K +1)s]pe−(ηp−εp)(t−s)ds

) 1
p
.

(2.5)
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Theorem
If assume further that

|b(x , i)|2 ≤ K , ‖σ(x , i)‖2HS ≤ K , x ∈ Rd , i ∈ S, (2.6)

then we have a simple estimate:

W2(L(Xt ),L(X̃t ))2

≤ (4ε−1+8)KC2(p)
1
p
(
N2t2‖Q − Q̃‖`1

) 1
q
(1− e−(ηp−εp)t

ηp − εp

) 1
p
.

(2.7)

21



Theorem

Let (Xt ,Λt ) and (X̂t , Λ̂t ) be the solutions of (1.1) and (1.7)
respectively. Assume (H1) and (H2) hold. Then

W2(L(Xt ),L(X̂t ))2

≤
(
4ε−1+8

)
KC2(p)

1
p
(
Nt)

2
q

(
‖B‖`1 + ‖Q1 − Q̂‖`1

) 1
q
Ψ(t , ε, ηp,K ,p),

(2.8)

where p > 1, q = p/(p − 1), ε and C2(p) are positive constants, ηp is
defined by (2.3), and Ψ(t , ε, ηp,K ,p) is given by (2.5). Assume
further that b and σ satisfy (2.6), then

W2(L(Xt ),L(X̂t ))2

≤ (4ε−1+8)KC2(p)
1
p
(
Nt
) 2

q
(
‖B‖`1 + ‖Q1 − Q̂‖`1

) 1
q
(1− ε−(ηp−εp)t

ηp − εp

) 1
p
.

(2.9)

22



Next, we consider the stability of the dynamical system (Xt ) under the
perturbation of the transition rate matrix when the coefficients of the
studied SDE are irregular. Precisely, let

dXt = b(Xt ,Λt )dt + σ(Xt )dWt , X0 = x0 ∈ Rd , Λ0 = i0 ∈ S, (2.10)

where σ : Rd → Rd×d is still Lipschitz continuous, but b only satisfies
some integrability condition. Here, (Λt ) is also a continuous time
Markov chain with a conservative and irreducible transition rate
matrix Q = (qij )i,j∈S). (Λt ) is assumed to be independent of (Wt ). An
interesting example (see F.Y. Wang) is

b(x , i) = βi

{ ∞∑
k=1

log
(

1 +
1

|x − k |2
)} 1

2 − x , (2.11)

where β : S→ R+. This drift b is rather singular, whereas we can
show that (Xt ) is still stable in a suitable sense w.r.t. the perturbation
of Q even in this situation.
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Similar to (1.1) and (1.7), we consider the processes (X̃t ) and
(X̂t ) corresponding to the perturbations Q̃ = (q̃ij)i,j∈S and
Q̂ = (q̂ij)i,j∈E . Namely,

dX̃t = b(X̃t , Λ̃t )dt + σ(X̃t )dWt , X̃0 = x0, Λ̃0 = i0, (2.12)

where (Λ̃t ) is associated with Q̃ and is independent of (Wt ).

dX̂t = b(X̂t , Λ̂t )dt + σ(X̂t )dWt , X̂0 = x0, Λ̂0 = i1 ∈ E , (2.13)

where (Λ̂t ) is associated with Q̂ on the state space E and is
independent of (Wt ). We shall measure the difference between
the distribution L(Xt ) and L(X̃t ) by the Fortet-Mourier distance
(also called bounded Lipschitz distance):

WbL(µ, ν) = sup
{∫

Rd
φdµ−

∫
Rd
φdν; ‖φ‖Lip + ‖φ‖∞ ≤ 1

}
(2.14)

for two probability measures µ, ν on Rd ,
‖φ‖Lip := supx ,y ,∈Rd ,x 6=y

|φ(x)−φ(y)|
|x−y | .
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To provide a suitable integrability condition on the drift b, we
need to introduce an auxiliary function V and its associated
probability measure µ0. Let V ∈ C2(Rd ), define

Z0(x) = −
d∑

i,j=1

(
aij(x)∂jV (x)

)
ei , (2.15)

where (aij(x)) = σ(x)σ∗(x), σ∗ denotes the transpose of σ,
{ei}di=1 is the canonical orthonormal basis of Rd and ∂j is the
directional derivative along ej . Let

µ0(dx) = e−V (x)dx . (2.16)

Assume that V satisfies:
(A) there exists a K0 > 0 such that |Z0(x)− Z0(y)| ≤ K0|x − y |

for all x , y ∈ Rd , and µ0(Rd ) = 1.
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Let
Z (x , i) = b(x , i)− Z0(x), x ∈ Rd , i ∈ S. (2.17)

Theorem

Suppose that condition (A) holds for the function V ∈ C2(Rd ). Let
T > 0 be fixed. Assume that there exists a constant η > 2Td such
that

max
i∈S

µ0

(
eη|σ

−1(·)Z (·,i)|2
)
<∞. (2.18)

Then

WbL(L(Xt ),L(X̃t )) ≤ C max
{
‖Q − Q̃‖

1
2q0
`1
, ‖Q − Q̃‖

1
2q0γ

`1

}
, t ∈ [0,T ],

(2.19)

for some constant C depending on T , x0, τ1,K0, γ, p0 and
maxi∈S µ0

(
eη|σ

−1(·)Z (·,i)|2
)

, where p0 > 1 is a constant satisfying

2p2
0Td < η, q0 = p0/(p0 − 1) and γ > 1 is a constant.
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Theorem

Suppose that condition (A) holds for the function V ∈ C2(Rd ). Let
T > 0 be fixed. Assume that there exists a constant η > 2Td such
that (2.18) still holds. The representation (1.8) holds. Then

WbL(L(Xt ),L(X̂t ))

≤ C max
{(
‖B‖`1 + ‖Q1 − Q̂‖`1

) 1
2q0 ,
(
‖B‖`1 + ‖Q1 − Q̂‖`1

) 1
2q0γ
}
, t ∈ [0,T ],

(2.20)

for some constant C depending on N,T , x0, τ1,K0, γ, p0 and
maxi∈§ µ0

(
εη|σ

−1(·)Z (·,i)|2
)

, where p0 > 1 is a constant satisfying

2p2
0Td < η, q0 = p0/(p0 − 1) and γ > 1 is a constant.
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Proofs of Main Results

Consider the following SDEs:

dXt = b(Xt ,Λt )dt + σ(Xt ,Λt )dWt , X0 = x0, Λ0 = i0, (2.21)

dX̃t = b(X̃t , Λ̃t )dt + σ(X̃t , Λ̃t )dWt , X̃0 = x0, Λ̃0 = i0. (2.22)

Here (Λt ) and (Λ̃t ) are continuous-time Markov chains on
S = {1, . . . ,N} with transition rate matrices Q = (qij)i,j∈S and
Q̃ = (q̃ij)i,j∈S respectively.
For the regime-switching diffusions (Xt ,Λt ) and (X̃t , Λ̃t ) with
Markovian switching, as usual we assume (Λt ) and (Λ̃t ) are
independent of the Brownian motion (Wt ). To be precise, we
introduce the following probability space (Ω,F ,P) used
throughout this work.
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Let
Ω1 = {ω

∣∣ω : [0,∞)→ Rd continuous, ω0 = 0},

which is endowed with the local uniform convergence topology and
the Wiener measure P1 so that its coordinate process W (t , ω) = ω(t),
t ≥ 0, is a d-dimensional Brownian motion.
Put

Ω2 = {ω
∣∣ω : [0,∞)→ S right continuous with left limit},

endowed with the Skorokhod topology and a probability measure P2.
The Markov chains (Λt ) and (Λ̃t ) are all constructed in the space
(Ω2,B(Ω2),P2). Set

(Ω,F ,P) = (Ω1 × Ω2,B(Ω1)×B(Ω2),P1 × P2).

Thus under P = P1 × P2, (Λt ), (Λ̃t ) are independent of the Brownian
motion (Wt ). Denote by EP1 taking the expectation with respect to the
probability measure P1, and similarly EP2 .
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Lemma

Let (Xt ,Λt ), (X̃t , Λ̃t ) be the solution of (2.21) and (2.22)
respectively and X0 = X̃0 = x0 ∈ Rd . Assume (H2) holds. Then,
for P2-almost surely ω2 ∈ Ω2,

EP1 [|Xt |2](ω2) ≤ (|x0|2 + 2Kt)ε(2K +1)t ,

EP1 [|X̃t |2](ω2) ≤ (|x0|2 + 2Kt)ε(2K +1)t , t > 0.
(2.23)

This can be proved by using the Itô formula, and taking the
expectation w.r.t. P1.
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We also need the following lemma.
Next, we construct a coupling process (Λt , Λ̃t ) such that (Λt )
and (Λ̃t ) are continuous-time Markov chains with transition rate
matrix Q and Q̃ respectively.

Lemma
It holds that ∫ t

0
P(Λs 6= Λ̃s)ds ≤ N2t2‖Q − Q̃‖`1 . (2.24)
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Proof of the Theorem

For simplicity of notation, let Zt = Xt − X̃t . Then, due to (H1) and
(H2), Itô’s formula yields that

d |Zt |2 =
{

2〈Zt ,b(Xt ,Λt )− b(X̃t , Λ̃t )〉+ ‖σ(Xt ,Λt )− σ(X̃t , Λ̃t )‖2
HS

}
dt + dMt

≤
{
κΛt |Zt |2+2〈Zt ,b(X̃t ,Λt )−b(X̃t , Λ̃t )〉+2‖σ(X̃t ,Λt )−σ(X̃t , Λ̃t )‖2

HS

}
dt +dMt

≤
{

(κΛt + ε)|Zt |2 +
1
ε

(
|b(X̃t ,Λt )|+ |b(X̃t , Λ̃t )|

)21{Λt 6=Λ̃t}

+ 4
(
‖σ(X̃t ,Λt )‖2

HS + ‖σ(X̃t , Λ̃t )‖2
HS

)
1{Λt 6=Λ̃t}

}
dt + dMt

≤
{

(κΛt + ε)|Zt |2 +
2K
ε

(1 + |X̃t |2)1{Λt 6=Λ̃t} + 8K (1 + |X̃t |2)1{Λt 6=Λ̃t}
}

dt + dMt

for any ε > 0, where Mt =
∫ t

0 2〈Zs, (σ(Xs,Λs)− σ(X̃s, Λ̃s))dWs〉 for
t ≥ 0 is a martingale.
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Taking the expectation w.r.t. P1 on both sides of the previous
inequality, we get

d EP1 [|Zt |2](ω2) ≤
(
4ε−1 + 8

)
KEP1

[
1 + |X̃t |2

]
(ω2)1{Λt 6=Λ̃t}(ω2)dt

+ (κΛt + ε)(ω2)EP1 [|Zt |2](ω2)dt .
(2.25)

Using the Gronwall inequality and Lemma, we obtain that

EP1 [|Zt |2](ω2) ≤
(
4ε−1+8

)
K
∫ t

0

(
1+(|x0|2+2Ks)e(2K +1)s

)
× 1{Λs 6=Λ̃s} e

∫ t
s (κΛr+ε)(ω2)dr ds.

33



Taking the expectation w.r.t. P2 and using Hölder’s inequality, we get

E|Zt |2 ≤
∫ t

0

{
(4ε−1 + 8)K

[
1 + (|x0|2 + 2Ks)e(2K +1)s]

·
(
E1{Λs 6=Λ̃s}(ω2)

) 1
q
(
Eep

∫ t
s (κΛr +ε)(ω2)dr) 1

p
}

ds
(2.26)

for p, q > 1 with 1/p + 1/q = 1.
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In order to estimate the term Eeq
∫ t

0 (κΛs +1)ds, we need the following
notation. Let

Qp = Q + pdiag(κ0, κ1, . . . , κN),

and
ηp = −max

{
Re(γ); γ ∈ spec(Qp)

}
,

where diag(κ0, κ1, . . . , κN) denotes the diagonal matrix generated by
the vector (κ0, κ1, . . . , κN), spec(Qp) denotes the spectrum of the
operator Qp. According to [1, Proposition 4.1], for any p > 0, there
exist two positive constants C1(p) and C2(p) such that

C1(p)e−ηp t ≤ Eep
∫ t

0 κΛs ds ≤ C2(p)e−ηp t , t > 0. (2.27)
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To estimate the term
∫ t

0 E1{Λs 6=Λ̃s}ds is in previous lemma.
Consequently, substituting the estimates (2.27) and (2.24) into (2.26),
we arrive at

E[|Zt |2] ≤
(
4ε−1+8

)
KC2(p)

1
p

(
N2t2‖Q − Q̃‖`1

) 1
q

·
(∫ t

0

[
1 + (|x0|2 + 2Ks)e(2K +1)s]pe−(ηp−εp)(t−s)ds

) 1
p
.

(2.28)
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Note that the solutions of (2.21) and (2.22) exist uniquely. Then the
distribution of (Xt , X̃t ) on Rd ×Rd is a coupling of L(Xt ) and L(X̃t ). By
the definition of the Wasserstein distance, it follows

W2(L(Xt ),L(X̃t ))2 ≤ E[|Xt − X̃t |2]

≤
(
4ε−1+8

)
KC2(p)

1
p N

2
q t

2
q ‖Q − Q̃‖

1
q
`1

·
(∫ t

0

[
1 + (|x0|2 + 2Ks)ε(2K +1)s]pe−(ηp−εp)(t−s)ds

) 1
p
,

which is the desired estimate (2.4).
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