Stability of regime-switching diffusion processes under perturbation of transition rate matrices

Chenggui Yuan

Department of Mathematics Swansea University Swansea, SA1 8EN (Joint work with Jinghai Shao)

1

- A regime-switching diffusion process (RSDP), is a diffusion process in random environments characterized by a Markov chain.
- The state vector of a RSDP is a pair (*X*(*t*), Λ(*t*)), where ${X(t)}_{t>0}$ satisfies a stochastic differential equation (SDE)

dX(*t*) = *b*(*X*(*t*), Λ(*t*))*dt* + *σ*(*X*(*t*), Λ(*t*))*dW*_{*t*}, *t* > 0, (1.1)

with the initial data $X_0 = x \in \mathbb{R}^n$, $\Lambda_0 = i \in \mathbb{S}$, and $\{\Lambda(t)\}_{t \geq 0}$ denotes a continuous-time Markov chain with the state space $\mathbb{S} := \{1, 2 \cdots, N\}, 1 \leq N \leq \infty$, and the transition rules specified by

$$
\mathbb{P}(\Lambda(t+\Delta)=j|\Lambda(t)=i)=\begin{cases} q_{ij}\Delta+o(\Delta), & i\neq j, \\ 1+q_{ii}\Delta+o(\Delta), & i=j. \end{cases}
$$
(1.2)

- A regime-switching diffusion process (RSDP), is a diffusion process in random environments characterized by a Markov chain.
- The state vector of a RSDP is a pair (*X*(*t*), Λ(*t*)), where ${X(t)}_{t>0}$ satisfies a stochastic differential equation (SDE)

$$
dX(t) = b(X(t), \Lambda(t))dt + \sigma(X(t), \Lambda(t))dW_t, \quad t > 0, \quad (1.1)
$$

with the initial data $X_0 = x \in \mathbb{R}^n$, $\Lambda_0 = i \in \mathbb{S}$, and $\{\Lambda(t)\}_{t \geq 0}$ denotes a continuous-time Markov chain with the state space $\mathbb{S} := \{1, 2 \cdots, N\}, 1 \leq N \leq \infty$, and the transition rules specified by

$$
\mathbb{P}(\Lambda(t+\Delta)=j|\Lambda(t)=i)=\begin{cases} q_{ij}\Delta+o(\Delta), & i\neq j, \\ 1+q_{ii}\Delta+o(\Delta), & i=j. \end{cases}
$$
(1.2)

Motivations (Cont.)

• RSDPs have considerable applications in e.g. control problems, storage modeling, neutral activity, biology and mathematical finance (see e.g. the monographs by Mao-Yuan (2006), and Yin-Zhu (2010)). The dynamical behavior of RSDPs may be markedly different from diffusion processes without regime switchings, see e.g. Pinsky -Scheutzow (1992), Mao-Yuan (2006).

晶 Mao, X. and Yuan, C., Stochastic Differential Equations with Markovian Switching, Imperial College Press, 2006 It is interesting to have a look of the following two equations

$$
dx(t) = x(t)dt + 2x(t)dW(t)
$$
\n(1.3)

and

$$
dx(t) = 2x(t) + x(t)dW(t)
$$
\n(1.4)

switching from one to the other according to the movement of the Markov chain $\Lambda(t)$. We observe that Eq. [\(1.3\)](#page-5-0) is almost surely exponentially stable since the Lyapunov exponent is $\lambda_1 = -1$ while Eq. [\(1.4\)](#page-5-1) is almost surely exponentially unstable since the Lyapunov exponent is $\lambda_2 = 1.5$.

Let Λ(*t*) be a right-continuous Markov chain taking values in $S = \{1, 2\}$ with the generator

$$
\Gamma=(\gamma_{ij})_{2\times 2}=\begin{pmatrix}-1&1\\ \gamma&-\gamma\end{pmatrix}.
$$

Of course *W*(*t*) and Λ(*t*) are assumed to be independent. Consider a one-dimensional linear SDEwMS

$$
dx(t) = a(\Lambda(t))x(t)dt + b(\Lambda(t))x(t)dW(t)
$$
 (1.5)

on *t* ≥ 0, where

$$
a(1) = 1, \quad a(2) = 2, \quad b(1) = 2, \quad b(2) = 1.
$$

However, as the result of Markovian switching, the overall behaviour, i.e. Eq. [\(1.5\)](#page-6-0) will be exponentially stable if $\gamma > 1.5$ but exponentially unstable if γ < 1.5 while the Lyapunov exponent of the solution is 0 when $\gamma = 1.5$.

Figure: The graph of numerical solution when $\gamma = 2$.

Figure: The graph of numerical solution when $\gamma = 1.5$.

Figure: The graph of numerical solution when $\gamma = 0.5$.

10

Motivations (Cont.)

- So far, the works on RSDPs have included ergodicity (Cloez-Hairer (2013), Shao (2014)) stability in distribution (Mao-Yuan (03), Xi-Yin (2010)), recurrence and transience (Pinsky-Scheutzow (1992),invariant densities (Bakhtin et al. (2014)) and so forth
- For the counterpart associated with Euler-Maruyama (EM) algorithms, we refer to Yuan-Mao (2005), and Yin-Zhu (2010), where RSDPs therein enjoy finite state space.
- So far, the works on RSDPs have included ergodicity (Cloez-Hairer (2013), Shao (2014)) stability in distribution (Mao-Yuan (03), Xi-Yin (2010)), recurrence and transience (Pinsky-Scheutzow (1992),invariant densities (Bakhtin et al. (2014)) and so forth
- For the counterpart associated with Euler-Maruyama (EM) algorithms, we refer to Yuan-Mao (2005), and Yin-Zhu (2010), where RSDPs therein enjoy finite state space.

Shao, J., Yuan, C., Stability of regime-switching processes under perturbation of transition rate matrices. Nonlinear Analysis: Hybrid Systems 33 (2019), 211-226. In this work we are concerned with the stability of the process (*Xt*) under perturbation of the transition rate matrix of (Λ(*t*)). From the application point of view, there are mainly two types of perturbations of *Q*.

First type of perturbation: The size of *Q* is fixed, however, each entry *qij* of *Q* may have small perturbation. Namely, there is another transition rate matrix $\tilde{Q} = (\tilde{q}_{ij})_{i,j\in\mathbb{S}}$, and each entry \tilde{q}_{ij} acts as an estimator of the element *qij* of *Q*. Without loss of generality, assume that \widetilde{Q} is conservative and totally stable, then a unique transition function P_t , $t \geq 0$ is determined (cf. e.g. [\[3,](#page-37-0) Corollary 3.12]). Let $(\tilde{\Lambda}(t))$ be a continuous-time Markov chain starting from $i_0 = \Lambda_0$ corresponding to \tilde{Q} . Then the distribution of $\tilde{\Lambda}_t$ is fixed, so, a new dynamical system $(\tilde{X}(t))$ is induced from the process $(\tilde{\Lambda}(t))$, i.e. $d\tilde{X}(t) = b(\tilde{X}(t),\tilde{\Lambda}(t))dt + \sigma(\tilde{X}(t),\tilde{\Lambda}(t))dW(t), \quad \tilde{X}_0 = x_0 \in \mathbb{R}^d, \ \tilde{\Lambda}(0) = i_0 \in \mathbb{S}.$

 (1.6)

Under some suitable conditions of the coefficients $b(\cdot, \cdot)$ and $\sigma(\cdot, \cdot)$, SDEs [\(1.1\)](#page-2-1) and [\(1.6\)](#page-13-0) admit a unique solution. Therefore, the distribution $\mathcal{L}(X(t))$ of $X(t)$ (resp. $\mathcal{L}(\tilde{X}(t))$ of $\tilde{X}(t)$) is determined in some sense by the transition rate matrix Q (resp. \ddot{Q}). The following basic and important question therefore arise:

− Can we use the difference between *Q* and *Q*e to charactrize the difference between the distributions of $X(t)$ and $\tilde{X}(t)$?

Second type of perturbation: The size of *Q* can be changed. In applications, when facing the graphs drawn from experimental data, it is hard sometimes to determine the number of the regimes for the regime-switching processes. For example, if there are actually three regimes, the process stays for a very short period of time at one of them. From this kind of experimental data, it is very likely that a regime-switching model with only two regimes are detected. What is the impact caused by this incorrect choice of the number of states for the regime-switching processes?

Precisely, let \widehat{Q} be a conservative transition rate matrix on $E := \mathbb{S} \setminus \{1, \ldots, m\}$ with $m < N$, which determines uniquely the ${\sf semigroup} \,\, \hat{P}_t = {\bm e}^{t\hat{Q}}, \,\, t\geq 0 \,\, {\sf on} \,\, E. \,\, {\sf Let} \, (\hat{\Lambda}_t) \,\, {\sf be} \,\, {\sf a} \,\, {\sf continue}$ Markov chain on E corresponding to (\hat{P}_t) or equivalently \hat{Q} . Using the same coefficients $b(\cdot, \cdot)$, $\sigma(\cdot, \cdot)$ as those of SDE [\(1.1\)](#page-2-1), and considering the new dynamical system (\hat{X}_t) corresponding to $(\hat{\Lambda}_t)$ defined by:

$$
d\hat{X}_t = b(\hat{X}_t, \hat{\Lambda}_t)dt + \sigma(\hat{X}_t, \hat{\Lambda}_t)dW_t, \quad \hat{X}_0 = x_0 \in \mathbb{R}^d, \ \hat{\Lambda}_0 = i_1 \in E. \tag{1.7}
$$

Under suitable conditions of *b* and σ , the solutions of [\(1.1\)](#page-2-1) and [\(1.7\)](#page-15-0) are uniquely determined. This means that given *Q*ˆ on *E*, the distribution of \hat{X}_t is then determined. Denote $\mathcal{L}(X_t)$ and $\mathcal{L}(\hat{X}_t)$ the distributions of X_t and \hat{X}_t respectively. We aim to measure the Wasserstein distance $\mathit{W}_2(\mathcal{L}(X_t),\mathcal{L}(\hat{X}_t))$ via the difference between the transition rate matrices $Q = (q_{ii})_{i,i\in\mathbb{S}}$ and $\hat{Q} = (\hat{q}_{ii})_{i,i\in\mathbb{S}}$. To achieve this, rewrite *Q* in the following form:

$$
Q = \begin{pmatrix} Q_0 & A \\ B & Q_1 \end{pmatrix}, \tag{1.8}
$$

where $\boldsymbol{Q_0} \in \mathbb{R}^{m \times m}$, $\boldsymbol{A} \in \mathbb{R}^{m \times (N-m)}$, $\boldsymbol{B} \in \mathbb{R}^{(N-m) \times m}$, and *Q*¹ ∈ R (*N*−*m*)×(*N*−*m*) .

To analyze the impact of the regularity of the coefficients in SDE [\(1.1\)](#page-2-1), we will consider separately two situations: SDEs with regular coefficients and SDEs with irregular coefficients. Let us first consider the situation that the coefficients of [\(1.1\)](#page-2-1) are regular. Assume the $\mathsf{coefficients}\; \pmb{b} : \mathbb{R}^d \times \mathbb{S} \rightarrow \mathbb{R}^d \; \mathsf{and}\; \sigma : \mathbb{R}^d \times \mathbb{S} \rightarrow \mathbb{R}^{d \times d} \; \mathsf{satisfy} \mathbb{S}$

(H1) For each $i \in \mathbb{S}$ there exists a constant κ_i such that

 $2\langle x-y, b(x,i)-b(y,i)\rangle+2\|\sigma(x,i)-\sigma(y,i)\|_{\text{HS}}^2\leq \kappa_i|x-y|^2, \quad x, y\in\mathbb{R}^d.$

(H2) There exists a constant *K* such that $|b(x, i)|^2 \le K(1+|x|^2), \quad ||\sigma(x, i)||_{\text{HS}}^2 \le K(1+|x|^2), \quad x \in \mathbb{R}^d, i \in \mathbb{S}.$

In this case, we shall use the Wasserstein distance $W_2(\cdot, \cdot)$ to measure the difference between the distributions of $X(t)$ and $\tilde{X}(t)$. which is defined by

$$
W_2(\nu_1,\nu_2)^2 = \inf_{\Pi \in \mathcal{C}(\nu_1,\nu_2)} \Big\{ \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^2 \Pi(dx,dy) \Big\},\tag{2.1}
$$

where $\mathcal{C}(\nu_1, \nu_2)$ denotes the set of all probability measures on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals ν_1 and $\nu_2.$

$$
17
$$

To analyze the impact of the regularity of the coefficients in SDE [\(1.1\)](#page-2-1), we will consider separately two situations: SDEs with regular coefficients and SDEs with irregular coefficients. Let us first consider the situation that the coefficients of [\(1.1\)](#page-2-1) are regular. Assume the $\mathsf{coefficients}\; \pmb{b} : \mathbb{R}^d \times \mathbb{S} \rightarrow \mathbb{R}^d \; \mathsf{and}\; \sigma : \mathbb{R}^d \times \mathbb{S} \rightarrow \mathbb{R}^{d \times d} \; \mathsf{satisfy} \mathbb{S}$

(H1) For each $i \in \mathbb{S}$ there exists a constant κ_i such that

 $2\langle x-y, b(x,i)-b(y,i)\rangle+2\|\sigma(x,i)-\sigma(y,i)\|_{\text{HS}}^2\leq \kappa_i|x-y|^2, \quad x, y\in\mathbb{R}^d.$

(H2) There exists a constant *K* such that

 $|b(x, i)|^2 \le K(1+|x|^2), \quad ||\sigma(x, i)||_{\text{HS}}^2 \le K(1+|x|^2), \quad x \in \mathbb{R}^d, i \in \mathbb{S}.$

In this case, we shall use the Wasserstein distance $W_2(\cdot, \cdot)$ to measure the difference between the distributions of $X(t)$ and $\tilde{X}(t)$. which is defined by

$$
W_2(\nu_1,\nu_2)^2 = \inf_{\Pi \in \mathcal{C}(\nu_1,\nu_2)} \Big\{ \int_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^2 \Pi(dx,dy) \Big\},\tag{2.1}
$$

where $\mathcal{C}(\nu_1, \nu_2)$ denotes the set of all probability measures on $\mathbb{R}^d \times \mathbb{R}^d$ with marginals ν_1 and $\nu_2.$

For an irreducible transition rate matrix *Q* on S, its corresponding transition probability measure $P_t(i, \cdot)$ must be ergodic. Denote $\pi = (\pi_i)$ the invariant probability measure of *Q*. Define τ to be the largest positive constant such that

$$
\sup_{i\in\mathbb{S}}\|P_t(i,\cdot)-\pi\|_{\text{var}}=O(\varepsilon^{-\tau t}),\quad t>0,\tag{2.2}
$$

where $\|\mu - \nu\|_{var}$ stands for the total variation distance between two probability measures μ and ν , i.e. $\|\mu - \nu\|_{\text{var}} = 2 \sup\{|\mu(A) - \nu(A)|; A \in \mathcal{B}(S)\}\$. Additionally, for *p* > 0, let

$$
Q_p = Q + p \operatorname{diag}(\kappa_0, \kappa_1, \ldots, \kappa_N),
$$

and

$$
\eta_{p} = -\max\big\{\operatorname{Re}(\gamma); \ \gamma \in \operatorname{spec}(Q_{p})\big\},\tag{2.3}
$$

where $spec(Q_p)$ denotes the spectrum of the operator Q_p .

Let (X_t, Λ_t) *and* $(\widetilde{X}_t, \widetilde{\Lambda}_t)$ *be the solutions of* [\(1.1\)](#page-2-1) *and* [\(1.6\)](#page-13-0) *respectively. Assume* (H1) *and* (H2) *hold. Then*

$$
W_2(\mathcal{L}(X_t), \mathcal{L}(\widetilde{X}_t))^2 \leq (4\epsilon^{-1} + 8)KC_2(p)^{\frac{1}{p}} \Big(N^2t^2\|Q - \widetilde{Q}\|_{\ell_1}\Big)^{\frac{1}{q}}\Psi(t, \epsilon, \eta_p, K, p),
$$
\n(2.4)

where $p > 1$ *,* $q = p/(p - 1)$ *,* ε *and* $C_2(p)$ *are positive constants,* ℓ_1 -norm is the maximum absolute row sum norm, η_p is defined by [\(2.3\)](#page-18-0)*, and*

$$
\Psi(t,\varepsilon,\eta_p,K,p) = \Big(\int_0^t \big[1+(|x_0|^2+2Ks)e^{(2K+1)s}\big]^p e^{-(\eta_p-\varepsilon p)(t-s)}ds\Big)^{\frac{1}{p}}.
$$
\n(2.5)

If assume further that

$$
|b(x,i)|^2 \leq K, \quad \|\sigma(x,i)\|_{\text{HS}}^2 \leq K, \quad x \in \mathbb{R}^d, \ i \in \mathbb{S}, \qquad (2.6)
$$

then we have a simple estimate:

$$
W_2(\mathcal{L}(X_t), \mathcal{L}(\widetilde{X}_t))^2
$$

\$\leq (4\epsilon^{-1}+8)KC_2(p)^{\frac{1}{p}}(N^2t^2||Q-\widetilde{Q}||_{\ell_1})^{\frac{1}{q}}\Big(\frac{1-e^{-(\eta_p-\epsilon p)t}}{\eta_p-\epsilon p}\Big)^{\frac{1}{p}}\$. (2.7)

Let (X_t, Λ_t) *and* $(\hat{X}_t, \hat{\Lambda}_t)$ *be the solutions of* [\(1.1\)](#page-2-1) *and* [\(1.7\)](#page-15-0) *respectively. Assume* (H1) *and* (H2) *hold. Then*

$$
W_2(\mathcal{L}(X_t), \mathcal{L}(\hat{X}_t))^2
$$

$$
\leq (4\epsilon^{-1}+8)KC_2(\rho)^{\frac{1}{\rho}}(Nt)^{\frac{2}{q}}\Big(\|B\|_{\ell_1}+\|Q_1-\widehat{Q}\|_{\ell_1}\Big)^{\frac{1}{q}}\Psi(t,\epsilon,\eta_p,K,\rho),
$$
(2.8)

where $p > 1$ *,* $q = p/(p - 1)$ *,* ε *and* $C_2(p)$ *are positive constants,* η_p *is defined by* [\(2.3\)](#page-18-0), and $\Psi(t, \varepsilon, \eta_p, K, p)$ *is given by* [\(2.5\)](#page-19-0). Assume *further that b and* σ *satisfy* [\(2.6\)](#page-20-0)*, then*

$$
W_2(\mathcal{L}(X_t), \mathcal{L}(\hat{X}_t))^2
$$

$$
\leq (4\epsilon^{-1}+8)KC_2(p)^{\frac{1}{p}}(Nt)^{\frac{2}{q}}\Big(||B||_{\ell_1}+||Q_1-\widehat{Q}||_{\ell_1}\Big)^{\frac{1}{q}}\Big(\frac{1-\epsilon^{-(\eta_p-\epsilon p)t}}{\eta_p-\epsilon p}\Big)^{\frac{1}{p}}.
$$

(2.9)

Next, we consider the stability of the dynamical system (X_t) under the perturbation of the transition rate matrix when the coefficients of the studied SDE are irregular. Precisely, let

$$
dX_t = b(X_t, \Lambda_t)dt + \sigma(X_t)dW_t, \quad X_0 = x_0 \in \mathbb{R}^d, \ \Lambda_0 = i_0 \in \mathbb{S}, \quad (2.10)
$$

 $\mathsf{where}~ \sigma : \mathbb{R}^{\mathsf{d}} \to \mathbb{R}^{\mathsf{d} \times \mathsf{d}}$ is still Lipschitz continuous, but *b* only satisfies some integrability condition. Here, (Λ*t*) is also a continuous time Markov chain with a conservative and irreducible transition rate matrix $Q = (q_{ii})_{i,i \in \mathbb{S}}$. (Λ_t) is assumed to be independent of (W_t) . An interesting example (see F.Y. Wang) is

$$
b(x, i) = \beta_i \left\{ \sum_{k=1}^{\infty} \log \left(1 + \frac{1}{|x - k|^2} \right) \right\}^{\frac{1}{2}} - x, \quad (2.11)
$$

where $\beta : \mathbb{S} \to \mathbb{R}_+$. This drift *b* is rather singular, whereas we can show that (X_t) is still stable in a suitable sense w.r.t. the perturbation of *Q* even in this situation.

Similar to [\(1.1\)](#page-2-1) and [\(1.7\)](#page-15-0), we consider the processes (X_t) and (\hat{X}_t) corresponding to the perturbations $\widetilde{Q}=(\widetilde{q}_{ij})_{i,j\in\mathbb{S}}$ and $\hat{Q} = (\hat{q}_{ii})_{i,i \in F}$. Namely,

$$
d\widetilde{X}_t = b(\widetilde{X}_t, \widetilde{\Lambda}_t)dt + \sigma(\widetilde{X}_t)dW_t, \ \widetilde{X}_0 = x_0, \ \widetilde{\Lambda}_0 = i_0, \qquad (2.12)
$$

where $(\tilde{\Lambda}_t)$ is associated with \widetilde{Q} and is independent of $(W_t).$

$$
d\hat{X}_t = b(\hat{X}_t, \hat{\Lambda}_t)dt + \sigma(\hat{X}_t)dW_t, \ \hat{X}_0 = x_0, \ \hat{\Lambda}_0 = i_1 \in E, \quad (2.13)
$$

where $(\hat{\Lambda}_t)$ is associated with $\hat{\bm{Q}}$ on the state space \bm{E} and is independent of (*Wt*). We shall measure the difference between the distribution $\mathcal{L}(X_t)$ and $\mathcal{L}(X_t)$ by the Fortet-Mourier distance (also called bounded Lipschitz distance):

$$
W_{bL}(\mu,\nu)=\sup\Big\{\int_{\mathbb{R}^d}\phi\,d\mu-\int_{\mathbb{R}^d}\phi\,d\nu;\ \|\phi\|_{\operatorname{Lip}}+\|\phi\|_{\infty}\leq 1\Big\}\tag{2.14}
$$

for two probability measures $\mu,\,\nu$ on $\mathbb{R}^d,$ $\|\phi\|_{\text{Lip}} := \sup_{x,y,\in\mathbb{R}^d, x\neq y} \frac{|\phi(x)-\phi(y)|}{|x-y|}$ *x*_J−*φ*(*y*_{)|}</sup>.
|*x*−*y*| 24

To provide a suitable integrability condition on the drift *b*, we need to introduce an auxiliary function *V* and its associated probability measure $\mu_0.$ Let $\mathsf{V}\in C^2(\mathbb{R}^d),$ define

$$
Z_0(x) = -\sum_{i,j=1}^d (a_{ij}(x)\partial_j V(x)) e_i, \qquad (2.15)
$$

where $(a_{ij}(x)) = \sigma(x)\sigma^*(x)$, σ^* denotes the transpose of σ , ${e_i}_{i=1}^d$ is the canonical orthonormal basis of \mathbb{R}^d and ∂_j is the directional derivative along *e^j* . Let

$$
\mu_0(dx) = e^{-V(x)}dx.
$$
 (2.16)

Assume that *V* satisfies:

(A) there exists a $K_0 > 0$ such that $|Z_0(x) - Z_0(y)| \leq K_0 |x - y|$ for all $x, y \in \mathbb{R}^d$, and $\mu_0(\mathbb{R}^d) = 1$.

$$
Z(x, i) = b(x, i) - Z_0(x), \quad x \in \mathbb{R}^d, i \in \mathbb{S}.
$$
 (2.17)

Suppose that condition (A) holds for the function $V \in C^2(\mathbb{R}^d)$ *. Let T* > 0 *be fixed. Assume that there exists a constant* η > 2*Td such that*

$$
\max_{i\in\mathbb{S}}\mu_0\left(e^{\eta|\sigma^{-1}(\cdot)Z(\cdot,j)|^2}\right)<\infty.\tag{2.18}
$$

Then

$$
W_{bL}(\mathcal{L}(X_t),\mathcal{L}(\widetilde{X}_t))\leq C \max\left\{\|Q-\widetilde{Q}\|_{\ell_1}^{\frac{1}{2q_0}},\|Q-\widetilde{Q}\|_{\ell_1}^{\frac{1}{2q_0\gamma}}\right\},\quad t\in[0,T],
$$
\n(2.19)

for some constant C depending on T, $x_0, \tau_1, K_0, \gamma, p_0$ *and* $\max_{i \in \mathbb{S}} \mu_0\Bigl(e^{\eta |\sigma^{-1}(\cdot) Z(\cdot, i)|^2}\Bigr)$, where $p_0 > 1$ is a constant satisfying 2 $p_0^2\, \mathcal{T}d < \eta$, $q_0 = p_0/(p_0-1)$ and $\gamma > 1$ is a constant.

Suppose that condition (A) holds for the function $V \in C^2(\mathbb{R}^d)$ *. Let T* > 0 *be fixed. Assume that there exists a constant* η > 2*Td such that* [\(2.18\)](#page-25-0) *still holds. The representation* [\(1.8\)](#page-15-1) *holds. Then*

$$
W_{bL}(\mathcal{L}(X_t), \mathcal{L}(\hat{X}_t))
$$

\n
$$
\leq C \max \left\{ \left(\|B\|_{\ell_1} + \|Q_1 - \widehat{Q}\|_{\ell_1} \right)^{\frac{1}{2q_0}}, \left(\|B\|_{\ell_1} + \|Q_1 - \widehat{Q}\|_{\ell_1} \right)^{\frac{1}{2q_0 \gamma}} \right\}, \quad t \in [0, T],
$$
\n(2.20)

for some constant C depending on N, T, x₀, τ₁, K₀, γ, p₀ <i>and $\max_{i \in \S} \mu_0\Big(\varepsilon^{\eta |\sigma^{-1}(\cdot)Z(\cdot, i)|^2}\Big)$, where $p_0>1$ is a constant satisfying 2 $p_0^2\, \mathcal{T}d < \eta$, $q_0 = p_0/(p_0-1)$ and $\gamma > 1$ is a constant.

Consider the following SDEs:

$$
dX_t = b(X_t, \Lambda_t)dt + \sigma(X_t, \Lambda_t)dW_t, \quad X_0 = x_0, \Lambda_0 = i_0, \quad (2.21)
$$

$$
d\widetilde{X}_t=b(\widetilde{X}_t,\widetilde{\Lambda}_t)dt+\sigma(\widetilde{X}_t,\widetilde{\Lambda}_t)dW_t,\quad \widetilde{X}_0=x_0,\ \widetilde{\Lambda}_0=i_0.\quad \text{(2.22)}
$$

Here (Λ_t) and $(\tilde{\Lambda}_t)$ are continuous-time Markov chains on $\mathbb{S} = \{1, \ldots, N\}$ with transition rate matrices $Q = (q_{ij})_{i,j \in \mathbb{S}}$ and $\widetilde{Q} = (\widetilde{q}_{ii})_{i,i \in \mathbb{S}}$ respectively.

For the regime-switching diffusions (X_t, Λ_t) and $(\widetilde{X}_t, \widetilde{\Lambda}_t)$ with Markovian switching, as usual we assume (Λ_t) and $(\tilde{\Lambda}_t)$ are independent of the Brownian motion (*Wt*). To be precise, we introduce the following probability space $(\Omega, \mathscr{F}, \mathbb{P})$ used throughout this work.

Let

$$
\Omega_1 = \{\omega \big| \, \omega : [0, \infty) \to \mathbb{R}^d \text{ continuous}, \ \omega_0 = 0 \},
$$

which is endowed with the local uniform convergence topology and the Wiener measure \mathbb{P}_1 so that its coordinate process $W(t, \omega) = \omega(t)$, *t* ≥ 0, is a *d*-dimensional Brownian motion. Put

 $\Omega_2 = \{\omega \vert \omega : [0,\infty) \to \mathbb{S} \text{ right continuous with left limit}\},$

endowed with the Skorokhod topology and a probability measure \mathbb{P}_{2} . The Markov chains (Λ_t) and $(\tilde{\Lambda}_t)$ are all constructed in the space $(\Omega_2, \mathscr{B}(\Omega_2), \mathbb{P}_2)$. Set

$$
(\Omega,\mathscr{F},\mathbb{P})=(\Omega_1\times\Omega_2,\mathscr{B}(\Omega_1)\times\mathscr{B}(\Omega_2),\mathbb{P}_1\times\mathbb{P}_2).
$$

Thus under $\mathbb{P}=\mathbb{P}_1\times \mathbb{P}_2,$ $(\Lambda_t),$ $(\tilde{\Lambda}_t)$ are independent of the Brownian motion (\textit{W}_t) . Denote by $\mathbb{E}_{\mathbb{P}_1}$ taking the expectation with respect to the probability measure \mathbb{P}_1 , and similarly $\mathbb{E}_{\mathbb{P}_2}.$

Lemma

Let (X_t, Λ_t) , $(\widetilde{X}_t, \widetilde{\Lambda}_t)$ *be the solution of* [\(2.21\)](#page-27-0) *and* [\(2.22\)](#page-27-1) ρ *respectively and* $X_0 = \widetilde{X}_0 = x_0 \in \mathbb{R}^d$ *. Assume (H2) holds. Then, for* \mathbb{P}_2 -almost surely $\omega_2 \in \Omega_2$,

$$
\mathbb{E}_{\mathbb{P}_1}[|X_t|^2](\omega_2) \le (|x_0|^2 + 2Kt)\varepsilon^{(2K+1)t},
$$

\n
$$
\mathbb{E}_{\mathbb{P}_1}[|\widetilde{X}_t|^2](\omega_2) \le (|x_0|^2 + 2Kt)\varepsilon^{(2K+1)t}, \quad t > 0.
$$
\n(2.23)

This can be proved by using the Itô formula, and taking the expectation w.r.t. \mathbb{P}_1 .

We also need the following lemma.

Next, we construct a coupling process $(\Lambda_t, \tilde{\Lambda}_t)$ such that (Λ_t) and $(\tilde{\Lambda}_t)$ are continuous-time Markov chains with transition rate matrix *Q* and *Q* respectively.

Lemma

It holds that

$$
\int_0^t \mathbb{P}(\Lambda_s \neq \tilde{\Lambda}_s) ds \leq N^2 t^2 \|Q - \widetilde{Q}\|_{\ell_1}.
$$
 (2.24)

For simplicity of notation, let $Z_t = X_t - X_t$. Then, due to (H1) and (110) , that formula viable that (H2), Itô's formula yields that

$$
d|Z_t|^2 = \left\{2\langle Z_t, b(X_t, \Lambda_t) - b(\widetilde{X}_t, \widetilde{\Lambda}_t)\rangle + \|\sigma(X_t, \Lambda_t) - \sigma(\widetilde{X}_t, \widetilde{\Lambda}_t)\|_{\text{HS}}^2\right\}dt + dM_t
$$

\n
$$
\leq \left\{\kappa_{\Lambda_t}|Z_t|^2 + 2\langle Z_t, b(\widetilde{X}_t, \Lambda_t) - b(\widetilde{X}_t, \widetilde{\Lambda}_t)\rangle + 2\|\sigma(\widetilde{X}_t, \Lambda_t) - \sigma(\widetilde{X}_t, \widetilde{\Lambda}_t)\|_{\text{HS}}^2\right\}dt + dM_t
$$

\n
$$
\leq \left\{\left(\kappa_{\Lambda_t} + \varepsilon\right)|Z_t|^2 + \frac{1}{\varepsilon}\left(\left|b(\widetilde{X}_t, \Lambda_t)\right| + \left|b(\widetilde{X}_t, \widetilde{\Lambda}_t)\right|\right)^2\mathbf{1}_{\{\Lambda_t \neq \widetilde{\Lambda}_t\}}
$$

\n
$$
+ 4\left(\|\sigma(\widetilde{X}_t, \Lambda_t)\|_{\text{HS}}^2 + \|\sigma(\widetilde{X}_t, \widetilde{\Lambda}_t)\|_{\text{HS}}^2\right)\mathbf{1}_{\{\Lambda_t \neq \widetilde{\Lambda}_t\}}\right\}dt + dM_t
$$

\n
$$
\leq \left\{\left(\kappa_{\Lambda_t} + \varepsilon\right)|Z_t|^2 + \frac{2K}{\varepsilon}\left(1 + |\widetilde{X}_t|^2\right)\mathbf{1}_{\{\Lambda_t \neq \widetilde{\Lambda}_t\}} + 8K\left(1 + |\widetilde{X}_t|^2\right)\mathbf{1}_{\{\Lambda_t \neq \widetilde{\Lambda}_t\}}\right\}dt + dM_t
$$

for any $\varepsilon > 0$, where $M_t = \int_0^t 2\langle Z_s, (\sigma(X_s, \Lambda_s) - \sigma(\widetilde{X}_s, \widetilde{\Lambda}_s))dW_s\rangle$ for $t \geq 0$ is a martingale.

Taking the expectation w.r.t. \mathbb{P}_1 on both sides of the previous inequality, we get

$$
d\mathbb{E}_{\mathbb{P}_1}[|Z_t|^2](\omega_2) \leq (4\epsilon^{-1}+8)K\mathbb{E}_{\mathbb{P}_1}[1+|\tilde{X}_t|^2](\omega_2)\mathbf{1}_{\{\Lambda_t\neq \tilde{\Lambda}_t\}}(\omega_2)dt + (\kappa_{\Lambda_t}+\epsilon)(\omega_2)\mathbb{E}_{\mathbb{P}_1}[|Z_t|^2](\omega_2)dt.
$$
\n(2.25)

Using the Gronwall inequality and Lemma, we obtain that

$$
\mathbb{E}_{\mathbb{P}_1}[|Z_t|^2](\omega_2)\leq \big(4\varepsilon^{-1}+8\big)K\int_0^t \Big(1+(|x_0|^2+2Ks)e^{(2K+1)s}\Big)\\ \times{\bf 1}_{\{\Lambda_s\neq \tilde{\Lambda}_s\}}\,e^{\int_s^t (\kappa_{\Lambda_r}+\varepsilon)(\omega_2)d\sigma}ds.
$$

Taking the expectation w.r.t. \mathbb{P}_2 and using Hölder's inequality, we get

$$
\mathbb{E}|Z_t|^2 \leq \int_0^t \left\{ (4\varepsilon^{-1} + 8)K[1 + (|x_0|^2 + 2Ks)e^{(2K+1)s}] \right. \cdot \left. \left(\mathbb{E} \mathbf{1}_{\{\Lambda_s \neq \tilde{\Lambda}_s\}}(\omega_2) \right)^{\frac{1}{q}} \left(\mathbb{E} e^{\rho \int_s^t (\kappa_{\Lambda_r} + \varepsilon)(\omega_2) dr} \right)^{\frac{1}{p}} \right\} ds
$$
\n(2.26)

for *p*, $q > 1$ with $1/p + 1/q = 1$.

In order to estimate the term $\mathbb{E} e^{q \int_0^t (\kappa_{\Lambda_s}+1) ds}$, we need the following notation. Let

$$
Q_p = Q + p \operatorname{diag}(\kappa_0, \kappa_1, \ldots, \kappa_N),
$$

and

$$
\eta_{p}=-\max\big\{\mathrm{Re}(\gamma);\,\gamma\in\mathrm{spec}(\textbf{Q}_{p})\big\},
$$

where $diag(\kappa_0, \kappa_1, \ldots, \kappa_N)$ denotes the diagonal matrix generated by the vector $(\kappa_0, \kappa_1, \ldots, \kappa_N)$, spec(Q_p) denotes the spectrum of the operator Q_p . According to [\[1,](#page-37-1) Proposition 4.1], for any $p > 0$, there exist two positive constants $C_1(p)$ and $C_2(p)$ such that

$$
C_1(p)e^{-\eta_pt}\leq \mathbb{E} e^{p\int_0^t \kappa_{\Lambda_s}ds}\leq C_2(p)e^{-\eta_pt},\quad t>0. \qquad (2.27)
$$

To estimate the term $\int_0^t \mathbb{E} \textbf{1}_{\{\Lambda_s\neq \tilde{\Lambda}_s\}} d s$ is in previous lemma. Consequently, substituting the estimates [\(2.27\)](#page-34-0) and [\(2.24\)](#page-30-0) into [\(2.26\)](#page-33-0), we arrive at

$$
\mathbb{E}[|Z_t|^2] \le (4\varepsilon^{-1} + 8)KC_2(p)^{\frac{1}{p}} \left(N^2t^2\|Q - \widetilde{Q}\|_{\ell_1}\right)^{\frac{1}{q}} \cdot \left(\int_0^t \left[1 + (|x_0|^2 + 2Ks)e^{(2K+1)s}\right]^p e^{-(\eta_p - \varepsilon p)(t-s)}ds\right)^{\frac{1}{p}}.
$$
\n(2.28)

Note that the solutions of [\(2.21\)](#page-27-0) and [\(2.22\)](#page-27-1) exist uniquely. Then the distribution of (X_t, X_t) on $\mathbb{R}^d \times \mathbb{R}^d$ is a coupling of $\mathcal{L}(X_t)$ and $\mathcal{L}(X_t)$. By the definition of the Wasserstein distance, it follows

$$
\begin{aligned} W_2(\mathcal{L}(X_t),\mathcal{L}(\widetilde{X}_t))^2 &\leq \mathbb{E}[|X_t-\widetilde{X}_t|^2] \\ &\leq \big(4\mathcal{\varepsilon}^{-1}+8\big)KC_2(\rho)^{\frac{1}{\rho}}N^{\frac{2}{q}}t^{\frac{2}{q}}\|Q-\widetilde{Q}\|_{\ell_1}^{\frac{1}{q}}\\ &\cdot \Bigl(\int_0^t\big[1+ (|x_0|^2+2Ks)\mathcal{\varepsilon}^{(2K+1)s}\big]^\rho e^{-(\eta_\rho-\mathcal{\varepsilon} \rho)(t-s)}ds\Bigr)^{\frac{1}{\rho}}, \end{aligned}
$$

which is the desired estimate [\(2.4\)](#page-19-1).

- 譶 J. Bardet, H. Guerin, F. Malrieu, Long time behavior of diffusions with Markov switching, ALEA Lat. Am. J. Probab. Math. Stat., 7 (2010), 151-170.
- **A.Y. Mitrophanov, The spectral gap and perturbation** bounds for reversible continuous-time Markov chains, J. Appl. Prob. 41 (2004), 1219-1222.
- 譶 M.-F. Chen, From Markov chains to non-equilibrium particle systems, 2nd ed. Singapore: World Scientific, 2004.
- 晶 B. Cloez, and M. Hairer, Exponential ergodicity for Markov processes with random switching, Bernoulli, 21 (2015),
- 歸 J. Bardet, H. Guerin, F. Malrieu, Long time behavior of diffusions with Markov switching, ALEA Lat. Am. J. Probab. Math. Stat., 7 (2010), 151-170.
- \Box A.Y. Mitrophanov, The spectral gap and perturbation bounds for reversible continuous-time Markov chains, J. Appl. Prob. 41 (2004), 1219-1222.
- 量 M.-F. Chen, From Markov chains to non-equilibrium particle systems, 2nd ed. Singapore: World Scientific, 2004.
- 畐 B. Cloez, and M. Hairer, Exponential ergodicity for Markov processes with random switching, Bernoulli, 21 (2015),
- Ħ J. Bardet, H. Guerin, F. Malrieu, Long time behavior of diffusions with Markov switching, ALEA Lat. Am. J. Probab. Math. Stat., 7 (2010), 151-170.
- \Box A.Y. Mitrophanov, The spectral gap and perturbation bounds for reversible continuous-time Markov chains, J. Appl. Prob. 41 (2004), 1219-1222.
- 歸 M.-F. Chen, From Markov chains to non-equilibrium particle systems, 2nd ed. Singapore: World Scientific, 2004.
- 晶 B. Cloez, and M. Hairer, Exponential ergodicity for Markov processes with random switching, Bernoulli, 21 (2015),
- E. J. Bardet, H. Guerin, F. Malrieu, Long time behavior of diffusions with Markov switching, ALEA Lat. Am. J. Probab. Math. Stat., 7 (2010), 151-170.
- \Box A.Y. Mitrophanov, The spectral gap and perturbation bounds for reversible continuous-time Markov chains, J. Appl. Prob. 41 (2004), 1219-1222.
- 歸 M.-F. Chen, From Markov chains to non-equilibrium particle systems, 2nd ed. Singapore: World Scientific, 2004.
- 晶 B. Cloez, and M. Hairer, Exponential ergodicity for Markov processes with random switching, Bernoulli, 21 (2015), 505–536.
- F M. Pinsky, and R. Pinsky, Transience recurrence and central limit theorem behavior for diffusions in random temporal environments, Ann. Probab. 21 (1993), 433–452.
- 歸 J. Shao, Ergodicity of one-dimensional regime-switching diffusion processes, Science China Math., 57 (2014), 2407–2414.
- **同** J. Shao. Criteria for transience and recurrence of regime-switching diffusion processes, Electron. J. Probab., 20 (2015), 1–15.
- J. Shao, and F.B. Xi, Stability and recurrence of 歸 regime-switching diffusion processes, SIAM J. Control Optim., 52 (2014), 3496–3516.
- 晶 F. Y. Wang, Estimates for Invariant Probability Measures of Degenerate SPDEs with Singular and Path-Dependent Drifts, PTRF (2017).

- Ħ M. Pinsky, and R. Pinsky, Transience recurrence and central limit theorem behavior for diffusions in random temporal environments, Ann. Probab. 21 (1993), 433–452.
- Ħ J. Shao, Ergodicity of one-dimensional regime-switching diffusion processes, Science China Math., 57 (2014), 2407–2414.
- **同** J. Shao. Criteria for transience and recurrence of regime-switching diffusion processes, Electron. J. Probab., 20 (2015), 1–15.
- 歸
	- J. Shao, and F.B. Xi, Stability and recurrence of regime-switching diffusion processes, SIAM J. Control Optim., 52 (2014), 3496–3516.
- **■** F. Y. Wang, Estimates for Invariant Probability Measures of Degenerate SPDEs with Singular and Path-Dependent Drifts, PTRF (2017).

43

- Ħ M. Pinsky, and R. Pinsky, Transience recurrence and central limit theorem behavior for diffusions in random temporal environments, Ann. Probab. 21 (1993), 433–452.
- Ħ J. Shao, Ergodicity of one-dimensional regime-switching diffusion processes, Science China Math., 57 (2014), 2407–2414.
- F J. Shao, Criteria for transience and recurrence of regime-switching diffusion processes, Electron. J. Probab., 20 (2015), 1–15.
- J. Shao, and F.B. Xi, Stability and recurrence of 歸 regime-switching diffusion processes, SIAM J. Control Optim., 52 (2014), 3496–3516.
- **■** F. Y. Wang, Estimates for Invariant Probability Measures of Degenerate SPDEs with Singular and Path-Dependent Drifts, PTRF (2017).

44

- Ħ M. Pinsky, and R. Pinsky, Transience recurrence and central limit theorem behavior for diffusions in random temporal environments, Ann. Probab. 21 (1993), 433–452.
- 歸 J. Shao, Ergodicity of one-dimensional regime-switching diffusion processes, Science China Math., 57 (2014), 2407–2414.
- F J. Shao, Criteria for transience and recurrence of regime-switching diffusion processes, Electron. J. Probab., 20 (2015), 1–15.
- J. Shao, and F.B. Xi, Stability and recurrence of F regime-switching diffusion processes, SIAM J. Control Optim., 52 (2014), 3496–3516.
- F. Y. Wang, Estimates for Invariant Probability Measures of Degenerate SPDEs with Singular and Path-Dependent

- F M. Pinsky, and R. Pinsky, Transience recurrence and central limit theorem behavior for diffusions in random temporal environments, Ann. Probab. 21 (1993), 433–452.
- 歸 J. Shao, Ergodicity of one-dimensional regime-switching diffusion processes, Science China Math., 57 (2014), 2407–2414.
- \blacksquare J. Shao, Criteria for transience and recurrence of regime-switching diffusion processes, Electron. J. Probab., 20 (2015), 1–15.
- J. Shao, and F.B. Xi, Stability and recurrence of 晶 regime-switching diffusion processes, SIAM J. Control Optim., 52 (2014), 3496–3516.
- 暈 F. Y. Wang, Estimates for Invariant Probability Measures of Degenerate SPDEs with Singular and Path-Dependent Drifts, PTRF (2017).